c-Myc and Sp1 contribute to proviral latency by recruiting histone deacetylase 1 to the human immunodeficiency virus type 1 promoter

G Jiang, A Espeseth, DJ Hazuda… - Journal of virology, 2007 - Am Soc Microbiol
G Jiang, A Espeseth, DJ Hazuda, DM Margolis
Journal of virology, 2007Am Soc Microbiol
Histone deacetylase (HDAC) inhibitors such as valproic acid (VPA) induce the expression of
quiescent proviral human immunodeficiency virus type 1 (HIV-1) and may deplete proviral
infection in vivo. To uncover novel molecular mechanisms that maintain HIV latency, we
sought cellular mRNAs whose expression was diminished in resting CD4+ T cells of HIV-1-
infected patients exposed to VPA. c-Myc was prominent among genes markedly
downregulated upon exposure to VPA. c-Myc expression repressed HIV-1 expression in …
Abstract
Histone deacetylase (HDAC) inhibitors such as valproic acid (VPA) induce the expression of quiescent proviral human immunodeficiency virus type 1 (HIV-1) and may deplete proviral infection in vivo. To uncover novel molecular mechanisms that maintain HIV latency, we sought cellular mRNAs whose expression was diminished in resting CD4+ T cells of HIV-1-infected patients exposed to VPA. c-Myc was prominent among genes markedly downregulated upon exposure to VPA. c-Myc expression repressed HIV-1 expression in chronically infected cell lines. Chromatin immunoprecipitation (ChIP) assays revealed that c-Myc and HDAC1 are coordinately resident at the HIV-1 long terminal repeat (LTR) promoter and absent from the promoter after VPA treatment in concert with histone acetylation, RNA polymerase II recruitment, and LTR expression. Sequential ChIP assays demonstrated that c-Myc, Sp1, and HDAC1 coexist in the same DNA-protein complex at the HIV promoter. Short hairpin RNA inhibition of c-Myc reduces both c-Myc and HDAC1 occupancy, blocks c-Myc repression of Tat activation, and increases LTR expression. These results expand the understanding of mechanisms that recruit HDAC and maintain the latency of HIV-1, suggesting novel therapeutic approaches against latent proviral HIV infection.
American Society for Microbiology